Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays.
نویسندگان
چکیده
BACKGROUND Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. METHODS This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. RESULTS Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. CONCLUSIONS Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.
منابع مشابه
DNA arrays
Motivation Other more recent applications include: • Comparative genomic hybridization (Array CGH) Assessing large genomic rearrangements. • SNP detection arrays Looking for Single nucleotide polymorphism in the genome of populations. • Chromatin immunoprecipitation (ChIP) studies Determining protein binding site occupancy throughout the genome. Whole-genome tilting arrays are mostly used for t...
متن کاملWhole genome scanning as a cytogenetic tool in hematologic malignancies.
Over the years, methods of cytogenetic analysis evolved and became part of routine laboratory testing, providing valuable diagnostic and prognostic information in hematologic disorders. Karyotypic aberrations contribute to the understanding of the molecular pathogenesis of disease and thereby to rational application of therapeutic modalities. Most of the progress in this field stems from the ap...
متن کاملSNP Array in Hematopoietic Neoplasms: A Review
Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies....
متن کاملClinical and Molecular Cytogenetic Characterisation of Children with Developmental Delay and Dysmorphic Features.
INTRODUCTION Developmental delay and dysmorphic features affect 1 - 3 % of paediatric population. In the last few years molecular cytogenetic high resolution techniques (comparative genomic hybridization arrays and single-nucleotide polymorphism arrays) have been proven to be a first-tier choice for clinical diagnostics of developmental delay and dysmorphic features. METHODS AND RESULTS In th...
متن کاملGenome-wide Mapping of Copy Number Variations Using SNP Arrays.
The availability of high-density single nucleotide polymorphism (SNP) microarrays in recent years has proven to be a great step forward in the context of global analysis of genomic abnormalities in disease. SNP arrays offer great robustness, high resolution and the possibility to detect a variety of different genomic copy number variations such as submicroscopic deletions, amplifications, loss ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 60 12 شماره
صفحات -
تاریخ انتشار 2014